A Higgs mass, fixed by hypothetical “axion” particle?

Natalie Wolchover, for Quanta Magazine:

What if the Higgs mass, and by implication the laws of nature, are unnatural? Calculations show that if the mass of the Higgs boson were just a few times heavier and everything else stayed the same, protons could no longer assemble into atoms, and there would be no complex structures — no stars or living beings. So, what if our universe really is as accidentally fine-tuned as a pencil balanced on its tip, singled out as our cosmic address from an inconceivably vast array of bubble universes inside an eternally frothing “multiverse” sea simply because life requires such an outrageous accident to exist?

And:

The story of the new model begins when the cosmos was an energy-infused dot. The axion mattress was extremely compressed, which made the Higgs mass enormous. As the universe expanded, the springs relaxed, as if their energy were spreading through the springs of the newly created space. As the energy dissipated, so did the Higgs mass. When the mass fell to its present value, it caused a related variable to plunge past zero, switching on the Higgs field, a molasseslike entity that gives mass to the particles that move through it, such as electrons and quarks. Massive quarks in turn interacted with the axion field, creating ridges in the metaphoric hill that its energy had been rolling down. The axion field got stuck. And so did the Higgs mass.

It’s a remarkable narrative, and a model that brings up as many questions as it purports to answer. So, the research will continue slowly, and not without challenge, as it should. But meanwhile, it’s fascinating to imagine that an accident of the remotest odds might give rise to a universe capable of contemplating itself.